
The campaigns of observation of the mutual phenomena of the Galilean satellites

The campaign 2014-2015

J.E. Arlot, IMCCE/obs. de Paris

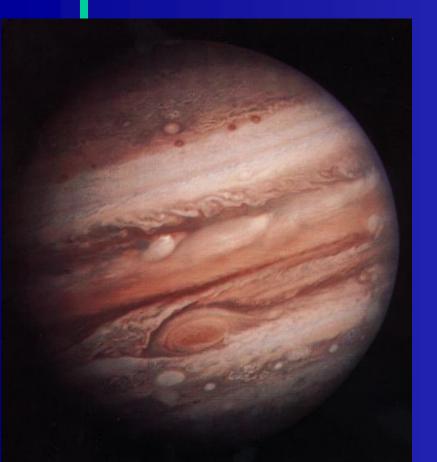
Mutual phenomena: rare phenomena

They occur only near the equinox on the planet

Jupiter: 2009, 2015 (every 6 years)

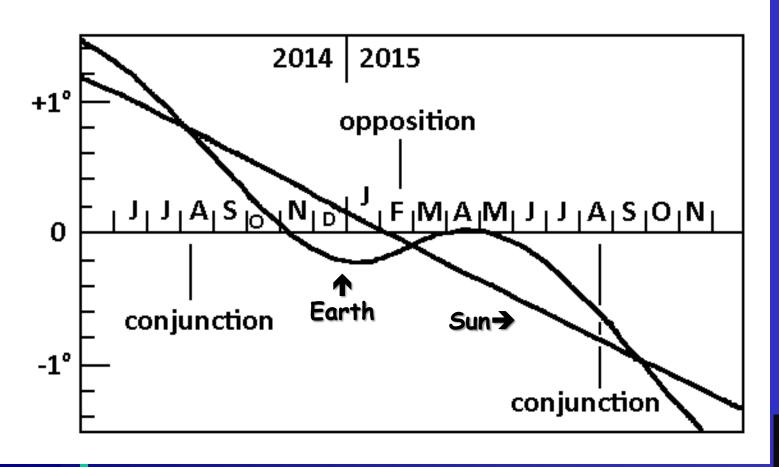
Saturn: 2009 (every 15 years)

Uranus: 2007 (every 42 years)


Equinoxes on the giant planets: Jupiter

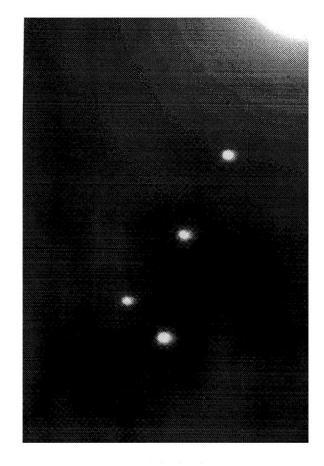
Jupiter: 2009, 2015 (every 6 years)

The Galilean satellites and also the small inner satellites are concerned



The jovicentric declination of the Earth and the Sun

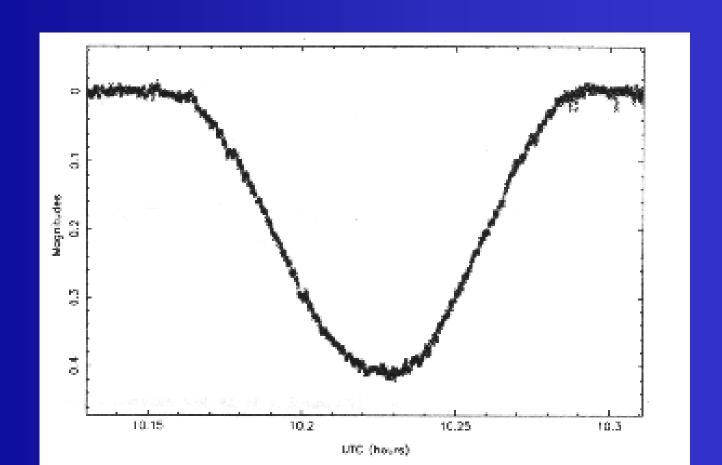
Mutual events occur when this declination is smaller than one degree



The Galilean satellites are too bright!

- Direct imaging difficult
- Easy observation of mutual events

as seen in a 80cm-telescope →


as seen in a 30cm-telescope:

The Galilean Satellites in May 1993
Observation made at Observatoire de Haute Provence
(0.80m telescope R filter)

Observing in R-band or V-band

Below the light curve of the light flux received from the satellites during a mutual events. The shape of the light curve depends on the ephemerides and on the physical parameters of the satellites.

Summary of observational campaigns

		Number of observations	Number of sites of observation	Number of observed events	Number of observable events
Jup	iter				
	1973	91	26	65	176
	1979	18	7	9	60
	1985	166	28	64	248
	1991	374	56	111	221
	1997	275	42	148	390
	2003	361	42	116	360
	2009	523	68	206	237
Sati	urn				
	1980	14	6	13	213
	1995	66	16	43	182
	2009	26	15	17	131
Ura	nus				
	2007	52	19	36	193

- The progress until today
 - change in the observers (more amateurs)
 - change in the instruments (smaller aperture and 2D photometry)
 - change in the network (more countries)

Occurrences	Size of the	telescopes	Photo	metry		
Jupiter	< 60cm	> or = 60cm	1 D	2 D		
	(amateurs)	(professionals)				
1973	4	20	24	0		
1979	3	7	10	0		
1985	12	12	21	3		
1991	37	19	39	17		
1997	35	10	15	30		
2003	34	15	8	41		
2009	52	10	0	62		
Saturn 1995	5	11	8	8		
Uranus 2007	4	11	0	15		

The PHEMU03 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter

J.-E. Arlot¹, W. Thuillot¹, C. Ruatti¹, A. Ahmad², A. Amossé⁴7, P. Anbazhagan⁵0, M. Andreyev⁵, A. Antov¹², M. Appakutty⁵0, D. Asher², S. Aubry¹, N. Baron¹, N. Bassien², M. Berthe³, R. Bogdanovski¹², F. Bosq²⁵, E. Bredner⁶, D. Buettner³, M. Buromsky⁴0, S. Cammarata²³, R. Casas⁵, G. D. Chis³, A. A. Christou², J.-P. Coquerel⁴⁴, R. Corlan¹0, C. Cremaschini¹¹, D. Crussaire²⁶, J. Cuypers³², M. Dennefeld⁴6, P. Descamps¹, A. Devyatkin²², D. Dimitrov¹², T.N. Dorokhova¹³, N.I. Dorokhov¹³, G. Dourneau²⁵, M. Dueñas¹⁴,⁵¹, A. Dumitrescu¹⁰, N. Emelianov⁴³, D. Ferrara²¹, D. Fiel¹⁵, A. Fienga¹, T. Flatres³⁰, S. Foglia¹¹, J. Garlitz¹⁶, J. Gerbos¹³, R. Gilber¹, R.M.D. Goncalves¹², D. Gonzāles¹⁴,¹, S. Yu. Gorda¹⁰, D.L. Gorshanov²², M. M. Harrington², T.R. Irsmambetova²⁰, Y. Ito²¹, V. Ivanova¹², I.S. Izmailov²², M. Yu. Khovritchev²², E.V. Khrutskaya²², J. Kieken²⁵, T. P. Kisseleva²², K. Kuppuswamy⁵⁰, V. Lainey¹, M. Lavayssiére²³, P. Lazzarotti²⁴, J.-F. Le Campion²⁵, E. Lellouch²⁶, Z.L. Li⁴², E. Lo Savio²³, M. Lou¹⁴, S. Montagnac⁴⁴, V. Moorthy⁵⁰, O. Nickel²⁰, J.M. Nier⁴⁴, T. Noel³⁰, B. Noyelles¹³, A. Oksanen³¹, D. Parrar⁴⁴, T. Pauwels³², Q.Y. Peng³³, G. Pizzetti¹¹, V. Priban³ଃ B. Ramachandran², N. Rambaux¹²⁵, M. Rapaport²⁵, P. Rapayy¹¹, G. Rau⁴⁴, J.-J. Sacrá³⁰, P.V. Sada³⁴, F. Salvaggio F²², P. Sarlin⁴⁴, C. Sciuto²¹, G. Selvakumar G.⁵⁰, A. Sergeyev A.⁵, M. Sidorov M.²², S. Sorescu¹⁰, S.A. Spampiniato¹¹, I. Stellmacher¹, E. Trunkovsky⁴³, V. Tejfel³⁵, V. Tudose¹⁰, V. Turcu³, I. Ugarte², P. Vantyghem⁴⁵, R. Vasundhara⁴, J. Vaubaillon¹, C. Velu⁵⁰, A.K. Venkataramana⁵₀, J. Vidal-Sāinz¹⁴, A. Vienne¹³, J. Vilar³⁶, P. Vingerhoets⁴⁰, W. Vollman³³

(Affiliations can be found after the references)

Received

ABSTRACT

Context. In 2003 the Sun and the Earth passed through the equatorial plane of Jupiter and therefore through the orbital planes of its main satellites.

Aims. During this period, phenomena of mutual eclipses and occultations occurred and have been observed and we now present the catalogue of the data gathered.

Methods. Light curves of mutual eclipses and occultations were recorded by the observers of the international campaign PHEMU03 organized by the Institut de mécanique céleste, Paris, France.

Results. We made 361 observations of 116 mutual events from 42 sites. The corresponding data are given in this paper. For each observation, information is given about the telescope, the receptor, the site and the observational conditions.

Conclusions. This paper gathers together all these data and gives a first estimate of the precision. The catalogue of these rare events published in this paper intends to be an improved basis of accurate astrometric data useful for the development of dynamical models.

Key words. Jupiter - Galilean satellites - Mutual events - Eclipses - Occultations - Astrometry

1. Introduction

Observations of mutual events of the natural satellites are performed intensively since 1973 and they had been proved to be a very accurate way to get astrometric measurements of the natural satellites. As we did in the past, we encouraged the observers to make as many observations as possible and we organized and coordinated an international campaign in order

to the observers of our international network made of 42 sites.

We provide in this paper all the data collected by our network: note that 19 more observations were made (at Meudon, Pulkovo, Armagh, Nauchny, Novara, Sendai, Terskol, Sobota Astronomy & Astrophysics manuscript no. phemu09-catal08 March 20, 2014 © ESO 2014

The PHEMU09 catalogue and astrometric results of the observations of the mutual occultations and eclipses of the Galilean satellites of Jupiter made in 2009.

J.-E. Arlot ¹, N. Emelianov ^{2,1}, M. I. Varfolomeev ², A. Amossé ³, C. Arena ⁴, M. Assafin ⁴⁰, L. Barbieri ⁵, S. Bolzoni ⁵, F. Bragas-Ribas ⁵⁴, J.I.B. Camargo ⁵⁴, F. Casarramona ⁸, R. Casas ³⁷, A. Christou ⁹, F. Colas ¹, A. Collard ³, S. Combe ¹⁰, M. Constantinescu ¹¹, G. Dangl ¹², P. De Cat ³⁴, S. Degenhardt ¹³, M. Delcroix ¹⁴, A. Dias-Oliveira ⁵⁴, G. Dourneau ^{15,57}, A. Douvris ¹⁹, C. Druon ³, C.K. Ellington ¹⁷, G. Estraviz ⁸, P. Farissier ¹⁰, A. Farmakopoulos ¹⁵, J. Gralitz ¹⁸, D. Gault ¹⁹, T. George ²⁰, S. Yu. Gorda ², J. Grismore ²¹, D.F. Guo ²², D. Herald ⁵⁶, M. Liakos ²⁶, S.L. Liao ²⁷, M. Ishida ²⁵, A.V. Ivanov ²⁴, B. Klemt ⁷, N. Koshkin ²⁵, J.F. Le Campion ^{15,57}, A. Liakos ²⁶, S.L. Liao ²⁷, S.N. Li ²⁷, B. Loader ²⁸, C. Lopresti ²⁹, E. Lo Savio ⁴, A. Marchini ³⁰, G. Marino ⁴, G. Masi ³³, A. Massasalle ⁸, R. Maulella ²⁹, J. KoFarland ⁹, K. Miyashita ³², C. Napoll ⁴, B. Noyelles ^{33,13}, T. Pauwels ³⁴, H. Pavlov ³⁵, Q.Y. Peng ³⁶, C. Perello ⁸, V. Priban ³⁸, J. Prost ³⁹, S. Razenon ³, J.P. Rousselle ^{3,58}, J. Rovira ⁸, R. Ruisi ⁴¹, N. Ruocco ³¹, F. Salvaggio ⁴, G. Sciuto ⁴, D.N. da Silva Neto ⁵⁵, N.V. Sinyaeva ⁴⁵, A. Solfa ⁴, A. Sonka ¹¹, J. Talbot ⁴⁶, Z.H. Tang ²⁷, V.G. Tejfel ⁴⁵, W. Thuillot ¹, K. Tigani ¹⁶, B. Timerson ⁴⁷, E. Tontodonati ⁴⁸, V. Tsamis ¹⁶, M. Unvini ⁴⁹, R. Nenable ⁵⁰, R. Veiera-Martinis ^{54,1,40}, J. Vilar ⁵¹, P. Vingerhoets ³⁴, H. Watanabe ⁵², H.X. Yin ²², Y. Yu ²⁷, R. Zambelli ²⁵

(Affiliations can be found after the references)

Received XX Xxxxx 2014 / Accepted XX Xxxxx 2014

ABSTRACT

Context. In 2009, the Sun and the Earth passed through the equatorial plane of Jupiter and therefore the orbital planes of its main satellites. It will be the equinox on Jupiter. This occurrence will make possible mutual occultations and eclipses between the schellites. Experience has shown that the observations of such events will provide accurate astrometric data able to bring new information on the dynamics of the Galilean satellites. Observations are made under the form of photometric measurements but need to be made through the organization of a world wide campaign of observation maximizing the number and the quality of the data obstained.

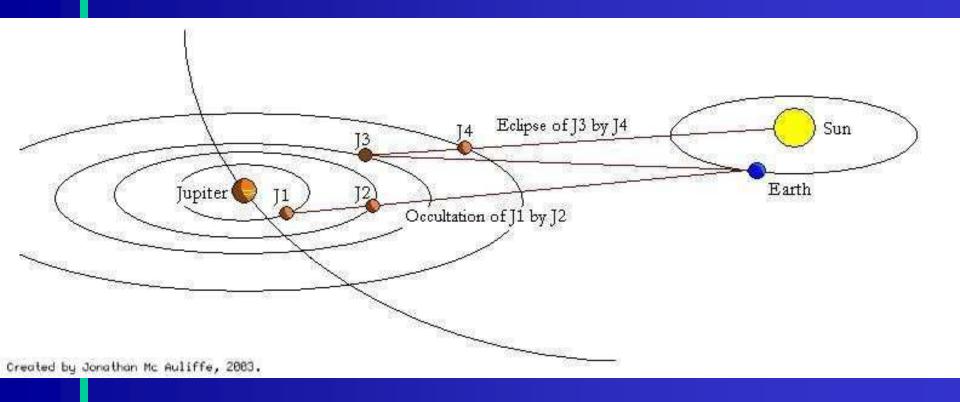
Aims. This work focuses on processing the complete database of photometric observations of the mutual occultations and eclipses of the Galilean satellities of Jupiter made during the international campaign in 2000. The final goal is to derive new accurate astrometric data.

Methods. We used an accurate photometric model of mutual events adequate of accuracy of observation. Our original method is applied to derive astrometric data from photometric observations of mutual occultations and eclipses of the Galilean satellites of Juniter.

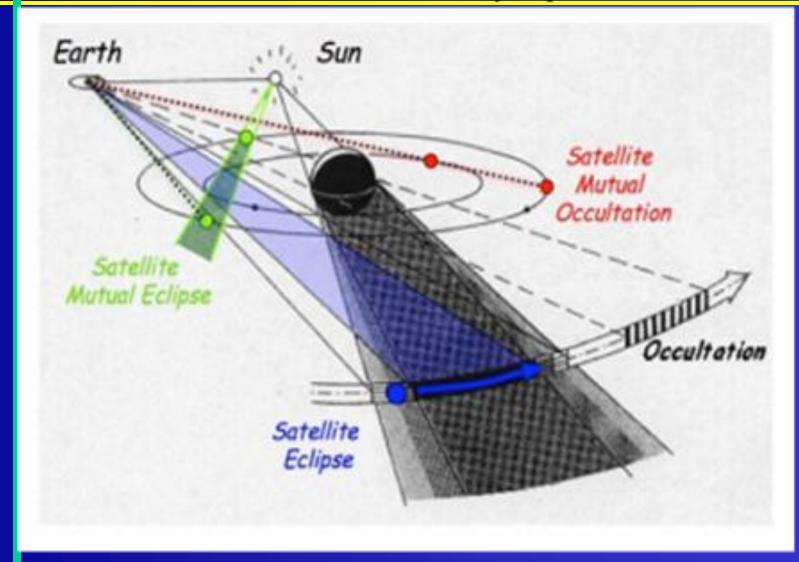
Results. We process the 457 light curves obtained during the international campaign of photometric observations of the Galliean satellites of Jupiter in 2009. As compared with the theory, for successful observations, the t.m.s. of 'O-C' residuals are equal to 4-28 and 81.1 mas in right secension and declination, respectively and the mean 'O-C' residuals are equal to -2 mas and -9 mas in right seconsion and declination respectively for mutual occultations and -6 mas and +1 mas in right asconsion and declination respectively for mutual occultations and -6.

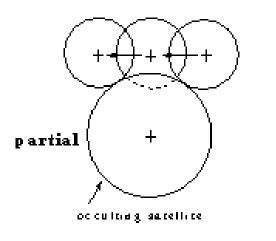
Key words. ephemerides - planets and satellites: general

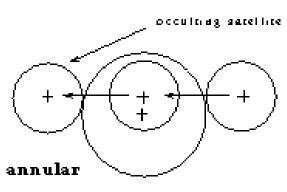
1. Introduction


Photometric observations of mutual occultations and eclipses of natural satellites of planets offer an efficient source of new astrometric data. We have taken the oppor-

Send offprint requests to: J.-E. Arlot


Publication of catalogues of the observed events (above in 2003 and in 2009) accessible on databases via Internet


¹ tables 4 and figures are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via


Mutual phenomena: the observation

The geometry of the mutual events and of the eclipse and occultation by Jupiter

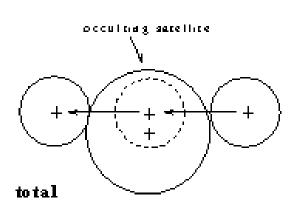


Fig. 3 - Occultations.

Geometry of a mutual phenomenon

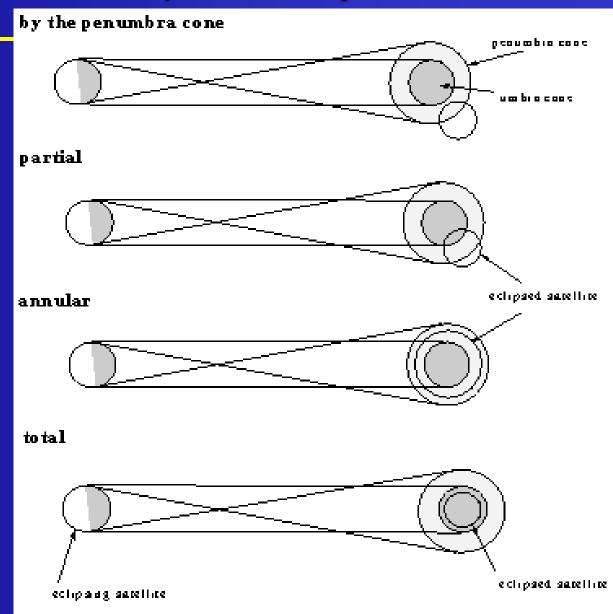
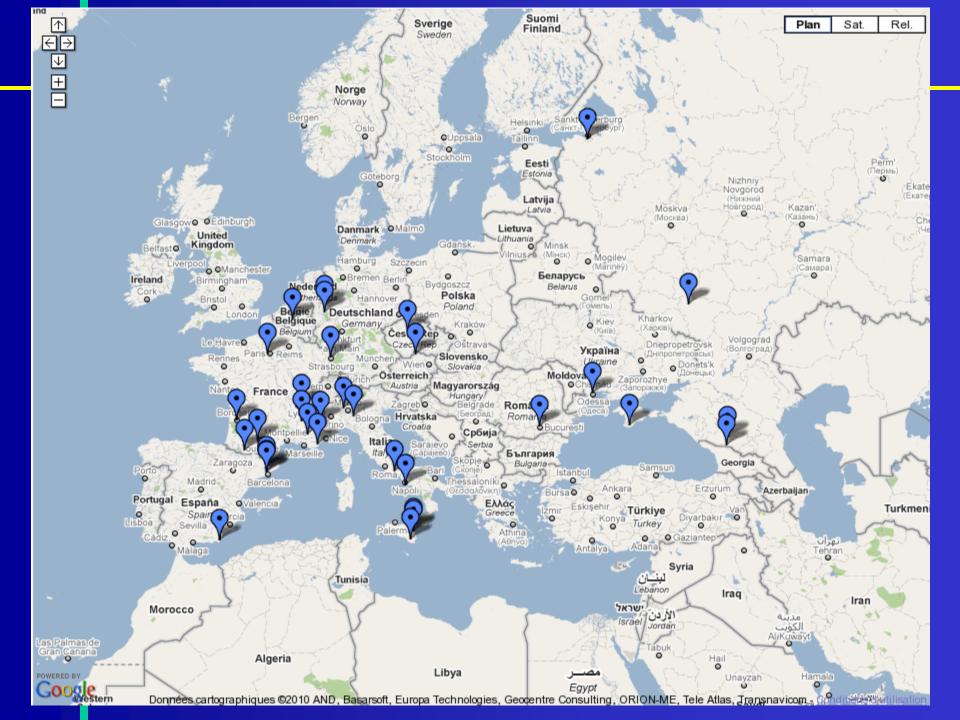
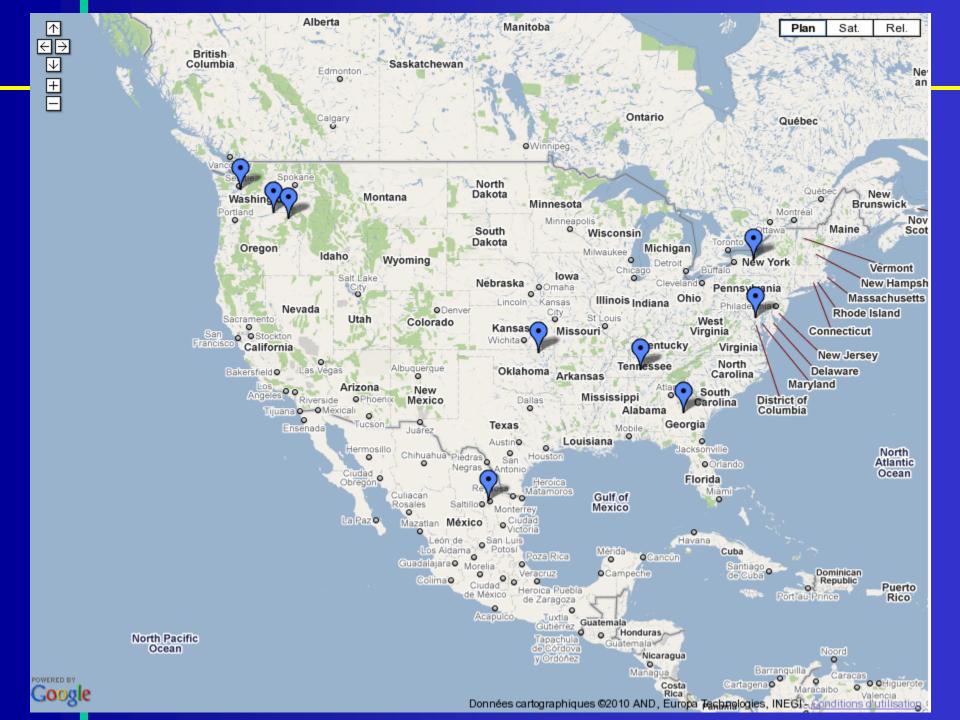
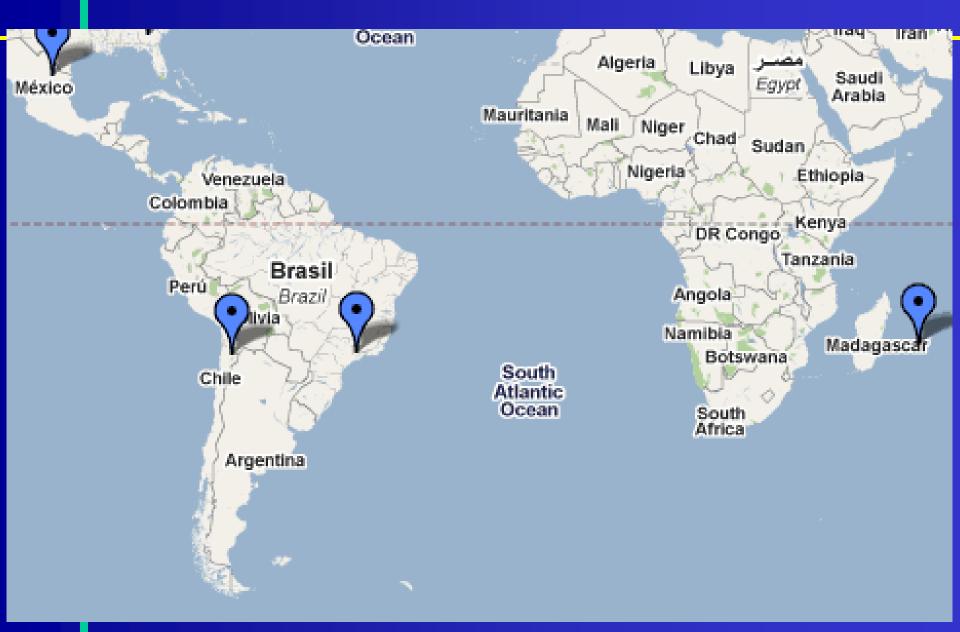
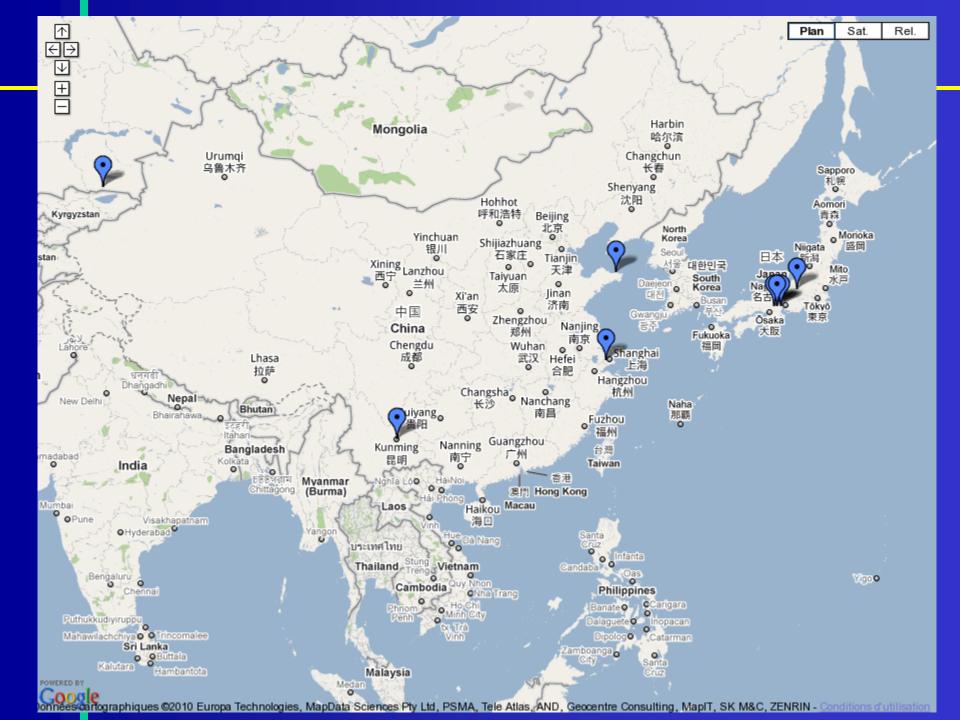


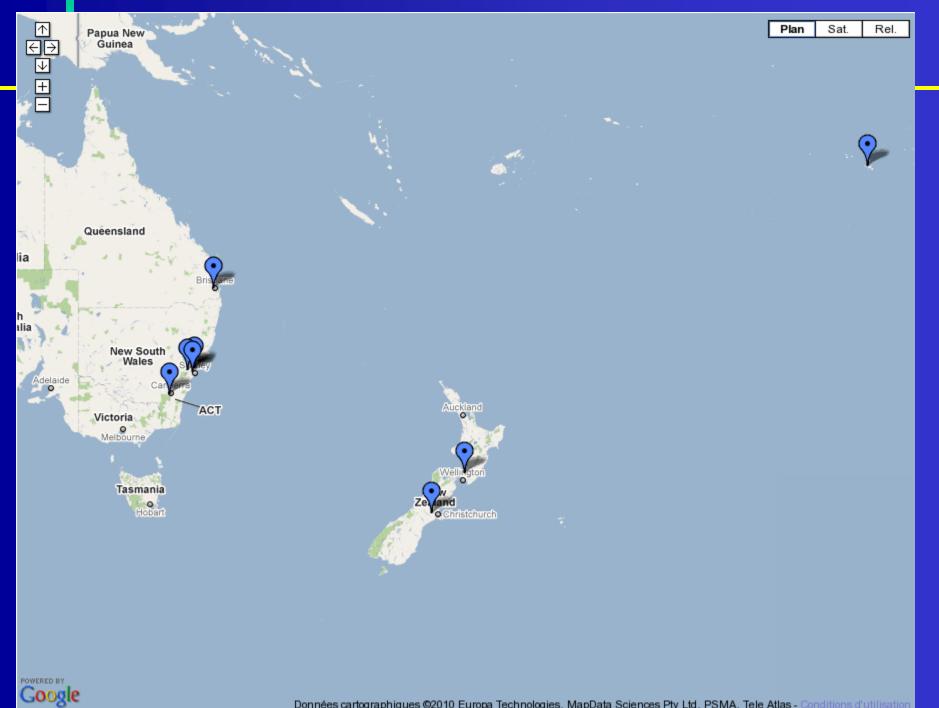
Fig. 4 - Eclipses.

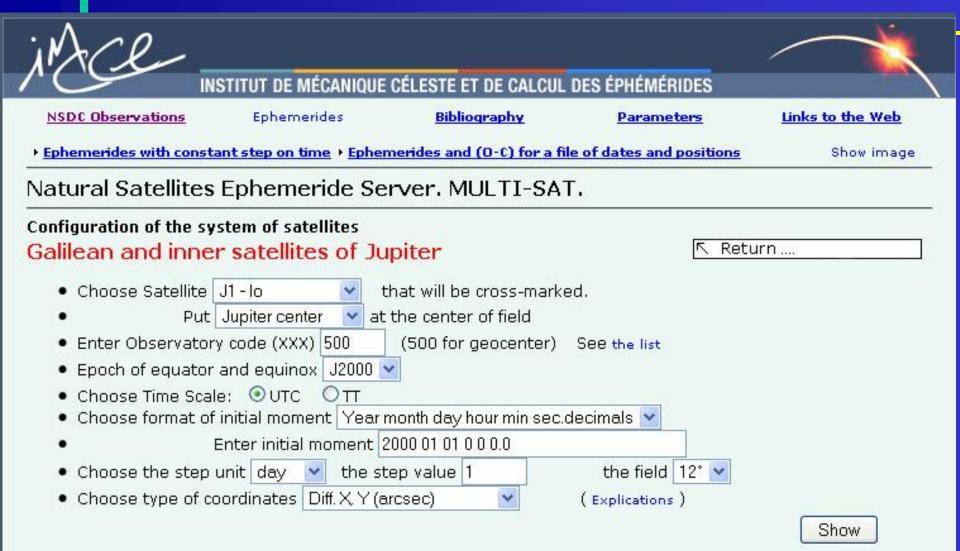

What happens during a mutual event?


We record the light sent by the satellites as a function of the Universal Time (to 0.1 second of time)

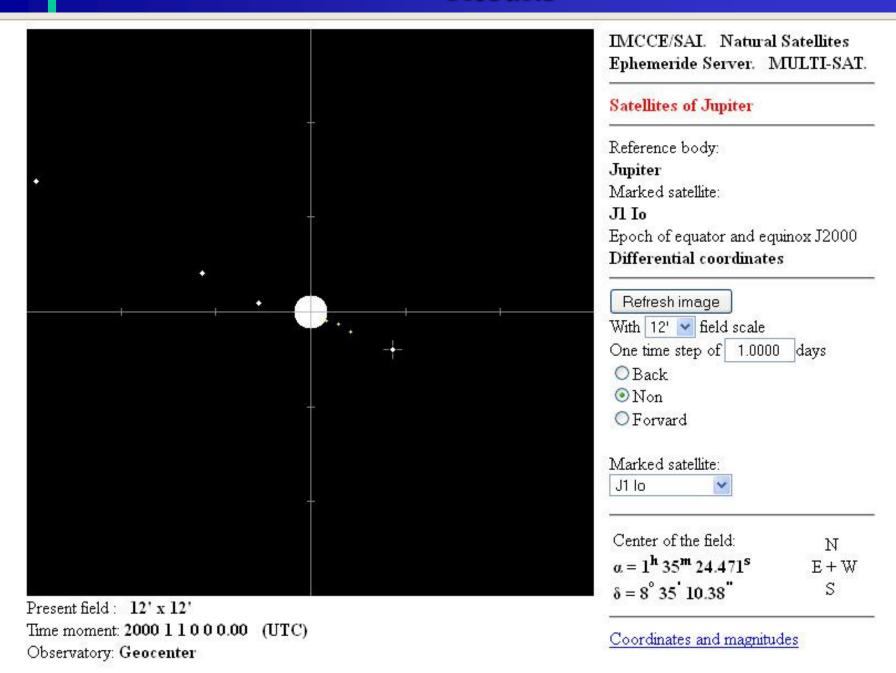



The sites of observation

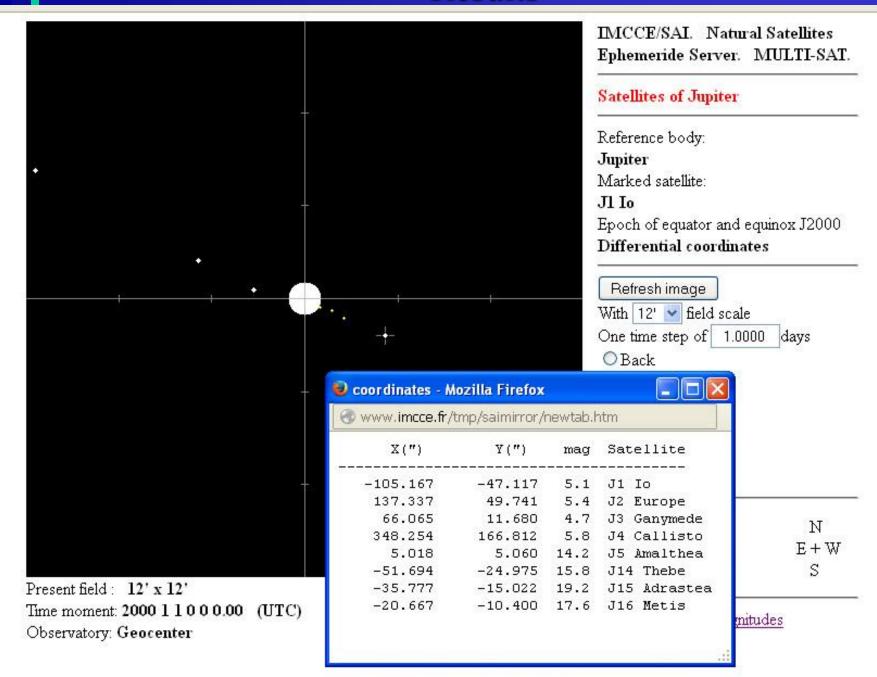


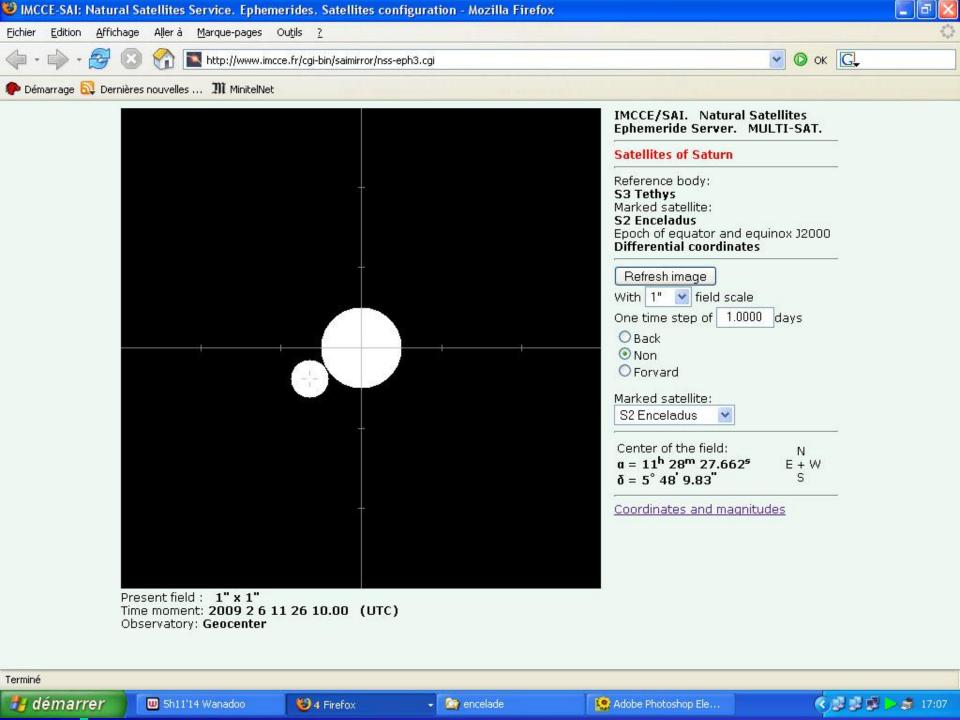


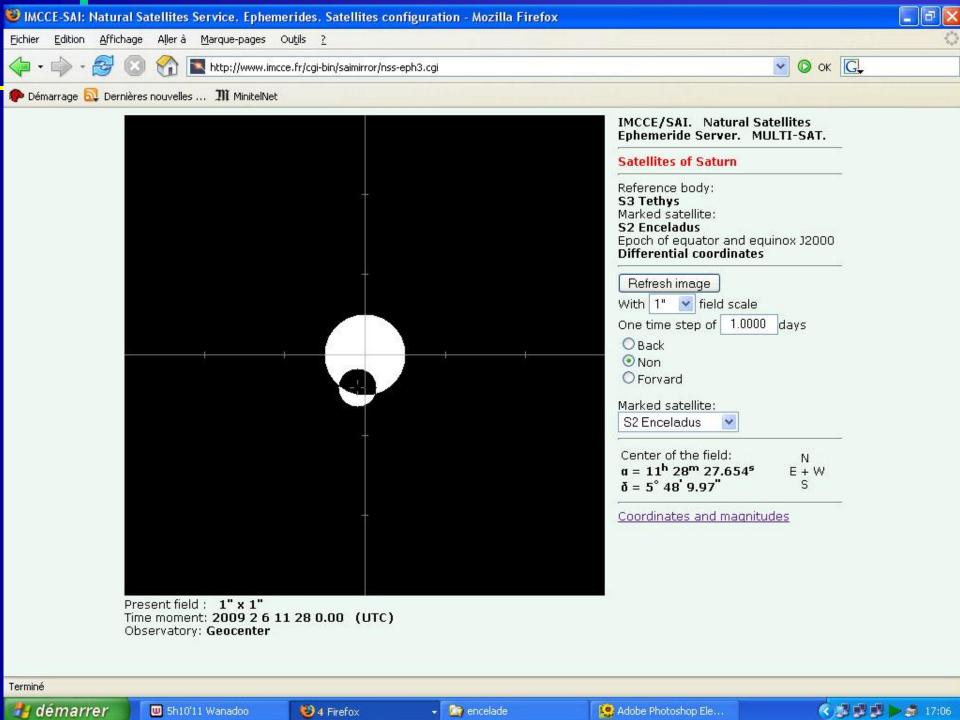
Web page for the configurations of the Galilean satellites


Sources

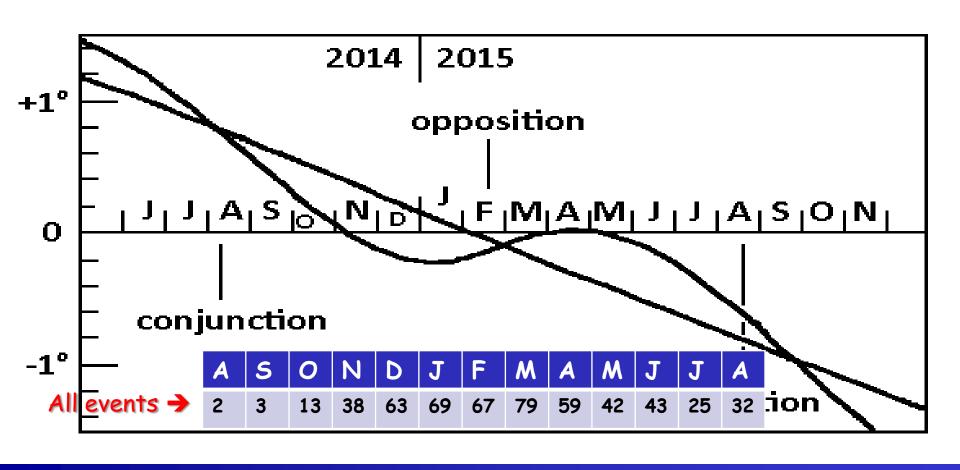
How to use


| Objectiv | Copyright | Nomenclature |


Credit


Results

Results


Period	Declination of Jupiter
1967-1968	+20° to +10°
1973-1974	-22° to -10°
1979-1980	+12° to + 8°
1985-1986	-22° to -14°
1990-1991	+18° to +20°
1997-1998 2002-2003	-18° to -4° $+23^{\circ}$ to $+18^{\circ}$
2002-2003	-20° to -10°
2014-2015	+23° to +15°

Favorable occurrences: either for the Northern hemisphere either for the Southern hemisphere

The dates of the 2014-2015 campaign of observation

	Jupiter
opposition	6 February 2015
conjunction	16 July 2014 and 18 August 2015
passage of the Sun in the equatorial plane (equinox)	5 February 2015
passage of the Earth in the equatorial plane (disappearance of the rings)	8 November 2014, 10 April and 5 May 2015
observing period	September 2014-June 2015
declinations of the planets	+22 to +20 degrees

Number of events each month

	A	5	0	N	D	J	F	M	A	M	J	J	A
Visible in Paris 👈	0	0	4	8	27	21	41	30	26	8	7	2	0

A mutual occultation: the photometric signal

Important facts and dates in 2014-2015:

	Jupiter
opposition	February 6, 2015
conjunction with Sun	Jul. 2014 & Aug. 2015
transit of the Sun in the equatorial plane of the planet (equinox)	February 5, 2015
transit of the Earth in the equatorial plane of the planet	Nov. 8 2014, April 10 and May 5, 2015
Declination of the planet	+22 to +20 deg.

http://www.imcce.fr/phemu

In 2014-2015, a series of eclipses and occultations will occur among the satellites of Jupiter thanks to the equinox on this planet occurring in 2015. The observation of these events provides valuable data and is possible even with a small telescope. However, in order to be scientifically useful, the observations must be performed very carefully following very precise instructions.

The technical notes PHEMU provide more information.

- Prediction of mutual events occurring in 2014-2015
 - Tables of predictions of the events of the Galilean satellites (2014-2015)
- D Tools for the observers of the mutual events
 - > Interactive software providing the visibility of the mutual phenomena of the Galilean satellites of Jupiter for any site of observation
 - > Interactive software computing the phenomena of the Galilean satellites by the planet Jupiter for any site of observation
 - Interactive software providing the configurations and positions of the Galilean satellites for a given date
 - > Download a software for your PC for the determination of the configurations of the satellites for a given date

Download here the observational sheet to be filled up and sent back after each observation.

- ▶ Technical Notes PHEMU
 - Technical Note n°1: Presentation of the galilean satellites and of the mutual events PDF
 Technical Note n°2: Presentation of the satellites of Saturn and Uranus (in preparation)
 - Technical Note n°3: The photometric observation of the mutual events -
- Technical Note n°4: The observation of the mutual events using video camera FDF
- Technical Note n°5: The observation of the mutual events with a CCD camera FDF
- Technical Note n°6: Examples of light curves obtained during the past campaigns of observation -

Finding the observable phenomena

INSTITUT DE MÉCANIQUE CÉLESTE ET DE CALCUL DES ÉPHÉMÉRIDES

NSDC Observations

Ephemerides

Bibliography

Parameters

Links to the Web

Natural Satellites Ephemeride Server, MULTI-SAT.

Ephemerides of the mutual eclipses and occultations of the Galilean satellites of Jupiter

in 2014-2015

To see the ephemerides of the events which are observed at your observatory with circumstances (object and sun altitudes, Moon phase)

enter Observatory code (XXX) 500 See the list or enter **500** to see all the events.

Show

(Explanation of the data in output)

Number of events: 477

The first event: 17 August 2014 The last event: 22 August 2015

Really, 442 events are observable from 1 September 2014

to 20 July 2015

See

Return

Earth-Sun-Jupiter configuration parameters

<u>See</u> References to the papers on the subject

Comments.

These are ephemerides in the form of a table being immediately appearing in a separate window. They are calculated previously with the main software of the MULTI-SAT server as it is called running by the item **Search for mutual occultations and eclipses and eclipses of satellites by planet.**

The theory by V.Lainey 2.0 is used.

Advantage of this form is that you have immediately ephemerides only for those events which are observed at your observatory.

| Objectiv | How to use | | Sources | Nomenclature |

Copyright

Planet: Jupiter (DE405)

Planet

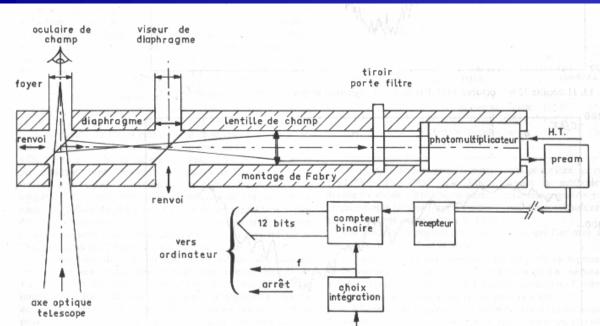
Observatory N: 007 - Paris

Timescale: UTC

Mean equator and equinox of J2000. ICRF.

Mutual	errents	of	gatel	lites.
nucuai	evenco	OT	Saces	TILCES.

Mutua	IT E	vent	3 (OI :	sati	silite	s:												
Date	be	gin:	h	m	8	end:	h	m	3	Type	Dur (m)	Impact	m	Δm	limb(")	dist(")	Planet(°)	Sun(°)	Moon phase
2014	10	21	2	1	19		2	4	20	203	3.0	0.943	4.8	0.007	129.32		: 18.541	-41.230	0.180
2014			5						37	204	3.1	0.869		0.017	37.33		: 48.757	-12.995	
2014				31			5 4		2	203	8.1	0.535		0.159	136.22		: 52.642	-10.094	
2014							4 3		45	4E3	131.2	0.044		1.393	231.83	48.20		-40.461]
2014		2		53	16		6		7	401	18.8	0.268		0.868	33.92	10.00.00.00	: 55.373	-7.798	
2014		9	2	57	3				37	102	1.6	0.906		0.019	9.52		: 37.819	-38.045	
2014			5	7	28				13	102	2.8	0.661		0.132	5.01		: 55.243	-18.332	
2014			3	2	3		3		20	403	7.3	0.596		0.230	56.18		: 43.684	-39.450	
2014			3	26	3		3 2		16	302	1.2	0.977		0.003	13.13		: 48.625	-36.409	
2014			2	9	53				30	3E4	88.6	0.331		0.292	314.34	54.84		-48.615	
2014			22	4	2	2			48	204	9.8	0.091		0.211	148.23		: 1.483	-56.793	
2014				29					42	302	4.3	0.663		0.155	4.89		: 50.886	-8.104	
2014				25			3 3		48	203	7.1	0.884		0.020	167.58		: 17.751	-63.232	
2014	12	4	6	32	34				36	4E2	5.0	0.900		0.076		110.03		-8.318	
2014		6		58			7 4		53	402	51.4	0.691		0.214	153.52		: 44.631	-4.811	
2014		6	22	11		2		19	8	301	7.9	0.254		0.521	86.18		: 8.090	-58.393	
2014			22		2	2		19	5	2E3	12.1	0.675		0.144	207.22	43.47		-61.135	
2014	12	10	23	45	22				51	103	4.5	0.536		0.168	2.14		: 26.167	-64.298	
2014	12	12	22	36	3	2	2 4	13	25	1E4	7.4	0.609	4.9	0.183	138.01	102.38	: 16.031	-61.150	0.594
2014	12	12	23	12	44		2 :	19	51	201	187.1	0.974		0.003	82.89		: 22.103	-63.726	0.593
2014	12	14	1	6	54		1 :	15	55	301	9.0	0.327	4.4	0.449	95.70		: 40.871	-59.749	0.529
2014	12	14	20	54	58	2	1 5	53	58	301	59.0	0.088	4.4	0.567	92.52		: 1.060	-48.082	0.479
2014	12	17	2	24	5		2 4	10	43	2E3	16.6	0.432	4.5	0.338	209.89	38.01	: 51.925	-49.905	0.341
2014	12	18	5	33	40		6 2	21	9	203	47.5	0.419	4.4	0.216	34.92		: 49.340	-19.353	0.268
2014	12	19	22	18	5	2	2 3	36	29	201	18.4	0.809	4.7	0.053	3.19		: 17.779	-59.239	0.153
2014	12	20	5	31	14		5 5	51	33	201	20.3	0.161	4.7	0.517	97.71		: 48.712	-19.935	0.132
2014	12	21	3	13	5		3 3	32	29	4E1	19.4	0.136	4.8	1.113	99.93	80.34	: 55.948	-42.637	0.070
2014	12	21	4	11	41		4 2	23	4	301	11.4	0.343	4.3	0.434	102.66		: 55.207	-33.052	0.067
2014	12	22	2	5	48		2 2	20	10	301	14.4	0.321	4.3	0.456	103.68		: 52.185	-53.018	0.028
2014	12	22	5	20	42		5 2	28	32	4E1	7.8	0.719	4.8	0.336	90.31	88.96	: 49.017	-21.807	0.031
2014	12	24	6	24	22		6 4	15	44	2 E 3	21.4	0.190	4.4	0.588	210.00	31.89	: 39.360	-11.893	0.169

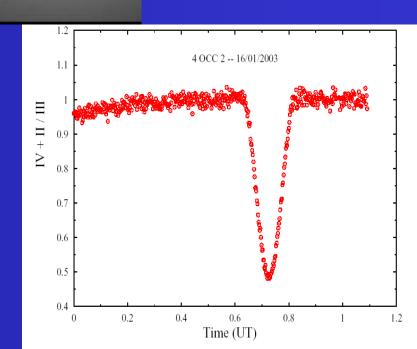

The mutual events

- They are photometric observations
- Each photometric point must be recorded to UTC at the nearest 0.1 s
- What is to observe?

Which instruments to observe the mutual events?

- A « small telescope »: confident observations were made in the past with a 6-cm instrument: the <u>stability</u> of the instrument and the <u>guiding</u> are essential.
- A CCD camera or a web-cam put at the focus of the instrument will provide usable images: attention, the gain of the camera must be <u>fixed</u> and not automatic during the observation
- Each image must be dated in <u>Universal Time (UTC)</u> to the nearest 0.1 second of time: the clock inside the PC computer is not confident. GPS time is convenient.
- · Avoid compressing the images when recorded.

← CCD image of the four galilean satellites put slightly out of focus to avoid saturation and to have more pixels illuminated


From the 1D photometer to the 2D CCD image

Fabry photometer for a total illumination of the cathode

Observing the mutual events

The Galilean satellites

A photometric timing: 0,1 sec = 1 km An astrometric measure: 0.1 arcsec = 300 km

High resolution mutual occultation and eclipse

16:38UT

Io Shadow Transit on Ganymede August 16, 2009 © Christopher Go (Cebu, Philippines) Ganymede occulting Io 25/05/2009 1842 - 1915 UT Mike Salway www.mikesalway.com.au

We do not need high resolution for photometry and astrometry

Observing the small inner satellites

Events for the inner small satellites available on: http://www.imcce.fr/hosted_sites/saimirror/nssphe0he.htm

The best observing conditions are for:
Amalthea, mv=14 at 30" from the limb of Jupiter

The maximum duration of an eclipse of Amalthea is 8 minutes

Infra-red observations

For difficult observing conditions:

- Very close to the limb of Jupiter
- During twilight

And for the eclipses of Amalthea (mv=14)

Use the absorption band of the methane:

- Jupiter darker
- Sky darker

Bands: 890 nm, 1.3 micrometer, 2.2 micrometers, ...

Be careful, the fluxes are fainter!

→ Need of larger telescopes!

Conclusion

- Rare evnets will occur in 2014-2015
- · We need a worldwide network of observers
- Join the campaign!
- Site Web: http://www.imcce.fr/phemu
- · e-mail: phemu@imcce.fr