================================================================================
================================================================================
8888888b. 888 888 d888 .d8888b.
888 Y88b 888 888 d8888 d88P Y88b
888 888 888 888 888 888
888 d88P 8888888888 888 .d88P
8888888P" 888 888 888 .od888P"
888 888 888 888 d88P"
888 888 888 888 888"
888 888 888 8888888 8888888888
================================================================================
================================================================================
CONTENTS : This file provides the ephemeris of the ninth Saturnian satellite: Phoebe
AUTHOR : J. Desmars
INSTITUTE : SHAO/IMCCE
E-MAIL : desmars@imcce.fr
REFERENCE : Desmars J, Li S.N., Tajeddine R., Peng Q.Y., Tang Z.H.
Phoebe's Orbit from ground-based and space-based observations
A&A xxx, pp xxx-xxx, 2013
================================================================================
FILES
-----
- README.txt : This file
- ph12.dat : Chebychev polynomia
- r-ph12.f90 : Fortran subroutines used to compute ephemeris
- test.f90 : Fortran program to test the computation
================================================================================
README FILE:
------------
This ephemeris of Phoebe is based on a numerical model fitted to the observations dispatched from 1898 to 2012.
This ephemeris is available for the period [1875/07/01:2022/06/30] and through Chebychev polynomia (ph12.dat) readable with the Fortran subroutines contained in r-ph12.f90.
================================================================================
FORTRAN SUBROUTINES
-------------------
header : Read the header of ph12.dat to load information such as degree
of polynomia or period of validity
Out: - nc : degree of polynomia
- ni : number of intervals
- a : first date of validity
- b : last date of validity
load : Load the coefficients of Chebychev polynomia
In : - nc : degree of polynomia (given by header)
- ni : number of intervals (given by header)
Out: - cf : coefficients
- dat : limit period of intervals
pos_ph12: Compute the position and velocity for a specific date (in TDB)
In : - a : first date of validity (given by header)
- b : last date of validity (given by header)
- nc : degree of polynomia (given by header)
- ni : number of intervals (given by header)
- cf : coefficients (given by load)
- dat : period of intervals (given by load)
- t : time in Julian Day(TDB) (given by user)
Out: - x : 6-dimension vector position-velocity
================================================================================
UNITS:
------
Positions and velocities are delivered in au and au/day.
================================================================================
EXAMPLE:
---------
Computation of test program should provide:
DJ = 2450000.500
x = -0.0565331612828 0.0683539886662 0.0384516012357
v = 0.0006274381157 0.0005863244731 0.0001848068219
DJ = 2450010.500
x = -0.0500094770787 0.0738915516615 0.0401187775865
v = 0.0006760155712 0.0005207212932 0.0001485844868
DJ = 2450020.500
x = -0.0430380897546 0.0787600402881 0.0414227955219
v = 0.0007170207018 0.0004526029081 0.0001122122879
DJ = 2450030.500
x = -0.0356934838269 0.0829369615563 0.0423632094735
v = 0.0007506989597 0.0003824876405 0.0000758949141
DJ = 2450040.500
x = -0.0280477753291 0.0864046264541 0.0429414578429
v = 0.0007772769397 0.0003108203647 0.0000398058905
DJ = 2450050.500
x = -0.0201709424078 0.0891494848086 0.0431605890901
v = 0.0007969545986 0.0002379862858 0.0000040948415
DJ = 2450060.500
x = -0.0121311204687 0.0911615948338 0.0430250573146
v = 0.0008098999282 0.0001643238889 -0.0000311057595
DJ = 2450070.500
x = -0.0039949380689 0.0924342165894 0.0425405797986
v = 0.0008162458227 0.0000901369008 -0.0000656748103
DJ = 2450080.500
x = 0.0041721225095 0.0929635183165 0.0417140493061
v = 0.0008160884008 0.0000157050494 -0.0000994974835
DJ = 2450090.500
x = 0.0123053506931 0.0927483881427 0.0405534955108
v = 0.0008094858976 -0.0000587057170 -0.0001324604177
DJ = 2450100.500
x = 0.0203404288541 0.0917903484568 0.0390680943969
v = 0.0007964587389 -0.0001328329038 -0.0001644470244
================================================================================
J.Desmars (2013/01/08)
================================================================================